如果你對深度學習和卷積神經網絡感興趣,但是并不知道從哪里開始,也不知道使用哪種庫,那么這里就為你提供了許多幫助。
在這篇文章里,我詳細解讀了9個我最喜歡的Python深度學習庫。
這個名單并不詳盡,它只是我在計算機視覺的職業生涯中使用并在某個時間段發現特別有用的一個庫的列表。
這其中的一些庫我比別人用的多很多,尤其是Keras、mxnet和sklearn-theano。
其他的一些我是間接的使用,比如Theano和TensorFlow(庫包括Keras、deepy和Blocks等)。
另外的我只是在一些特別的任務中用過(比如nolearn和他們的Deep Belief Network implementation)。
這篇文章的目的是向你介紹這些庫。我建議你認真了解這里的每一個庫,然后在某個具體工作情境中你就可以確定一個最適用的庫。
我想再次重申,這份名單并不詳盡。此外,由于我是計算機視覺研究人員并長期活躍在這個領域,對卷積神經網絡(細胞神經網絡)方面的庫會關注更多。
我把這個深度學習庫的列表分為三個部分。
第一部分是比較流行的庫,你可能已經很熟悉了。對于這些庫,我提供了一個通俗的、高層次的概述。然后,針對每個庫我詳細解說了我的喜歡之處和不喜歡之處,并列舉了一些適當的應用案例。
第二部分進入到我個人最喜歡的深度學習庫,也是我日常工作中使用最多的,包括:Keras、mxnet和sklearn-theano等。
最后,我對第一部分中不經常使用的庫做了一個“福利”板塊,你或許還會從中發現有用的或者是在第二板塊中我還沒有嘗試過但看起來很有趣的庫。
接下來就讓我們繼續探索。